The effect of snail secretion filtrate on photoaged skin


śluz ślimaka
naturalne produkty
promieniowanie ultrafioletowe skin
snail mucus
natural products
ultraviolet radiation

How to Cite

Wojnarowicz J, Wilk A, Duchnik E, Marchlewicz M. The effect of snail secretion filtrate on photoaged skin. JoFA [Internet]. 2021Dec.31 [cited 2022May17];4(2):113-27. Available from:


Skin is the organ in permanent contact with environmental factors which could accelerate the aging process. The changes occurring due to the aging process are particularly noticeable in the skin. Skin ageing is dependent on endogenous and exogenous factors determined by environmental factors, primarily the ultraviolet radiation (photoaging).
The Authors reviewed the articles available at PubMed, ResearchGate and GoogleScholar on the composition and application of preparations containing snail mucus. The results of the literature analysis revealed that snail mucus contains substances such as allantoin, glycolic acid, lactic acid, collagen, elastin, extracellular matrix metalloproteinases as well as their inhibitors, and antioxidant enzymes. Also, it was demonstrated that the use of preparations containing snail mucus had beneficial effects on the condition of the skin, including improved skin hydration, normalisation of the thickness of the epidermis, improved skin structure, increased cell proliferation index, reduction of skin elastosis and decreased hyperpigmentation. Moreover, the regenerative mechanism of action of snail mucus resulted in a clinical alleviation of lesions in patients with dermatological problems of various aetiology. Therefore, it appears that snail mucus could be a good biostimulator and its use has many beneficial effects for the skin.


Puizina‑Ivić N. Skin aging. Acta Dermatovenerol Alp Pannonica Adriat. 2008;17:47–54.

Zouboulis CC, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol. 2011;29:3–14.

Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci. 2017;85:152–161.

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti‑aging strategies. Dermatoendocrinol. 2012;4:308–319.

Farage MA, Miller KW, Elsner P, Maibach HI. Structural characteristics of the aging skin. a review. Cutan Ocul Toxicol. 2007;26:343–357.

Zhang S, Duan E. Fighting against Skin Aging. The Way from Bench to Bedside. Cell Transplant. 2018;27:729–738.

Noszczyk M, Ciupińska M, Wydawnictwo Lekarskie P. Kosmetologia pielęgnacyjna i lekarska. Warszawa. Wydawnictwo Lekarskie PZWL; 2021.

Del Bino S, Duval C, Bernerd F. Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. Int J Mol Sci. 2018;19.

Lo Cicero A, Delevoye C, Gilles‑Marsens F, Loew D, Dingli F, Guéré C, André N, Vié K, van Niel G, Raposo G. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun. 2015;6:7506.

Ata P, Majewski S. Fotostarzenie skóry. Przegląd Dermatologiczny (Warszawa ; 1959) 2013:178–183.

Ryšavá A, Čížková K, Franková J, Roubalová L, Ulrichová J, Vostálová J, Vrba J, Zálešák B, Rajnochová Svobodová A. Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. J Photochem Photobiol B 2020, 209:111948.

Parzonko A, Kiss AK. Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA‑radiation. Phytomedicine. 2019;57:215–222.

Furio L, Berthier‑Vergnes O, Ducarre B, Schmitt D, Peguet‑Navarro J. UVA radiation impairs phenotypic and functional maturation of human dermal dendritic cells. J Invest Dermatol. 2005;125:1032–1038.

Burke KE. Mechanisms of aging and development‑A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech Ageing Dev. 2018;172:123–130.

Pain S, Berthélémy N, Naudin C, Degrave V, André‑Frei V. Understanding Solar Skin Elastosis‑Cause and Treatment. J Cosmet Sci. 2018;69:175–185.

Cicero A, Giangrosso G, Cammilleri G, Macaluso A, Currò V, Galuppo L, Vargetto D, Vicari D, Ferrantelli V. Microbiological and Chemical Analysis of Land Snails Commercialised in Sicily. Ital J Food Saf. 2015;4:4196.

Greistorfer S, Klepal W, Cyran N, Gugumuck A, Rudoll L, Suppan J, von Byern J. Snail mucus – glandular origin and composition in Helix pomatia. Zoology (Jena) 2017, 122:126–138.

Dankowiakowska M, Domagalska B. Ślimaki lądowe jako źródło surowców o potencjalnym wykorzystaniu w kosmetologii i dermatologii. Polish Journal of Cosmetology. 2018;21:114–120.

Żwawiak J, Zaprutko L. Zastosowanie śluzu ślimaka w kosmetyce. Polish Journal of Cosmetology. 2015;18:280–282.

Gubitosa J, Rizzi V, Fini P, Laurenzana A, Fibbi G, Veiga‑Villauriz C, Fanelli F, Fracassi F, Onzo A, Bianco G, et al. Biomolecules from snail mucus (Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound healing and anti‑inflammatory activity. Soft Matter. 2020;16:10876–10888.

Conte R. Recent advances on nano delivery of Helix mucus pharmacologically active components. International Journal of Nano Dimension. 2016;7:181–185.

Nishinami S, Yoshizawa S, Arakawa T, Shiraki K. Allantoin and hydantoin as new protein aggregation suppressors. Int J Biol Macromol. 2018;114:497–503.

Araújo LU, Grabe‑Guimarães A, Mosqueira VC, Carneiro CM, Silva‑Barcellos NM. Profile of wound healing process induced by allantoin. Acta Cir Bras. 2010;25:460–466.

Celleno L. Topical urea in skincare. A review. Dermatol Ther. 2018;31:e12690.

Voegeli D. Urea creams in skin conditions. composition and outcomes. Dermatology in Practice. 2012;18:13–15.

Igile GO, Essiet G, Uboh F, Edet E. Rapid Method for the Identification and Quantification of Allantoin in Body Creams and Lotions for Regulatory Activities. 2014.

Becker LC, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG, Jr., Shank RC, Slaga TJ, Snyder PW, Alan Andersen F. Final report of the safety assessment of allantoin and its related complexes. Int J Toxicol. 2010;29:84s-97s.

Sharad J. Glycolic acid peel therapy – a current review. Clin Cosmet Investig Dermatol. 2013;6:281–288.

Chan GJ. Use of superficial glycolic acid peels in clinical practice. Hong Kong Journal of Dermatology and Venereology. 2012;20:111–113.

Kapuścińska A, Nowak I. [Use of organic acids in acne and skin discolorations therapy]. Postepy Hig Med Dosw (Online) 2015, 69:374–383.

Soleymani T, Lanoue J, Rahman Z. A Practical Approach to Chemical Peels. A Review of Fundamentals and Step‑by‑step Algorithmic Protocol for Treatment. J Clin Aesthet Dermatol. 2018;11:21–28.

Vishal B, Rao SS, Pavithra S, Shenoy MM. Contact urticaria to glycolic acid peel. J Cutan Aesthet Surg. 2012;5:58–59.

Ata R, Aladdin A, Othman N, Malek RA, Leng O, Aziz R, El Enshasy H. Lactic acid applications in pharmaceutical and cosmeceutical industries. Journal of Chemical and Pharmaceutical Research 2015. 2015:729–735.

Tang S‑C, Yang J‑H. Dual Effects of Alpha‑Hydroxy Acids on the Skin. Molecules (Basel, Switzerland) 2018, 23:863.

Babilas P, Knie U, Abels C. Cosmetic and dermatologic use of alpha hydroxy acids. J Dtsch Dermatol Ges. 2012;10:488–491.

Brieva A, Philips N, Tejedor R, Guerrero A, Pivel JP, Alonso‑Lebrero JL, Gonzalez S. Molecular basis for the regenerative properties of a secretion of the mollusk Cryptomphalus aspersa. Skin Pharmacol Physiol. 2008;21:15–22.

Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci. 2016;17.

Cruz MC, Sanz‑Rodríguez F, Zamarrón A, Reyes E, Carrasco E, González S, Juarranz A. A secretion of the mollusc Cryptomphalus aspersa promotes proliferation, migration and survival of keratinocytes and dermal fibroblasts in vitro. Int J Cosmet Sci. 2012;34:183–189.

Pitt SJ, Graham MA, Dedi CG, Taylor‑Harris PM, Gunn A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br J Biomed Sci. 2015;72:174–181; quiz 208.

Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11:3919–3931.

Zdybicka‑Barabas A, Stączek S, Cytryńska M. Różnorodność peptydów przeciwdrobnoustrojowych bezkręgowców. Kosmos. problemy nauk biologicznych 2017:563–574.

Packia Lekshmi NCJ, Anusha S, Jeeva S, Raja Brindha J, Viveka S, Selva Bharath M. Antibacterial activity of fresh water crab and snail and isolation of antibacterial peptides from haemolymph by sds‑page. Int J Pharmcy Pharm Sci International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7:109–114.

Salbach J, Rachner TD, Rauner M, Hempel U, Anderegg U, Franz S, Simon J‑C, Hofbauer LC, SpringerLink. Regenerative potential of glycosaminoglycans for skin and bone. 2011.

Mulloy B. Glycosaminoglycans and proteoglycans. 2018.

Kroma A, Feliczak‑Guzik A, Nowak I. The use of glycosaminoglycans in cosmetic products. Chemik Chemik. 2012;66:136–139.

Lee DH, Oh J‑H, Chung JH. Glycosaminoglycan and proteoglycan in skin aging. Journal of Dermatological Science Journal of Dermatological Science. 2016;83:174–181.

Smith MM, Melrose J. Proteoglycans in Normal and Healing Skin. Adv Wound Care (New Rochelle) 2015, 4:152–173.

Tsoutsos D, Kakagia D, Tamparopoulos K. The efficacy of Helix aspersa Müller extract in the healing of partial thickness burns. A novel treatment for open burn management protocols. Journal of Dermatological Treatment Journal of Dermatological Treatment. 2009;20:219–222.

Alameda MT, Morel E, Parrado C, González S, Juarranz Á. Cryptomphalus aspersa Mollusc Egg Extract Promotes Regenerative Effects in Human Dermal Papilla Stem Cells. International journal of molecular sciences. 2017;18:463.

Tribo‑Boixareu MJ, Parrado‑Romero C, Rais B, Reyes E, Vitale‑Villarejo MA, Gonzalez S. Clinical and Histological Efficacy of a Secretion of the Mollusk Cryptomphalus aspersa in the Treatment of Cutaneous Photoaging. COSMETIC DERMATOLOGY -CEDAR KNOLLS- 2009, 22:247–252.

Fabi SG, Cohen JL, Peterson JD, Kiripolsky MG, Goldman MP. The Effects of Filtrate of the Secretion of the Cryptomphalus Aspersa on Photoaged Skin. Journal of drugs in dermatology. JDD 2013, 12:453–457.

Truchuelo MT, Vitale M. A cosmetic treatment based on the secretion of Cryptomphalus aspersa 40% improves the clinical results after the use of nonablative fractional laser in skin aging. Journal of cosmetic dermatology. 2020;19:622–628.

Vitale M, Perez‑Davo A, Zhihao C, Nobile V, Truchuelo MT. Evaluation of the Efficacy of a New Intensive Antiaging Treatment Based on the Combination of the Secretion of Cryptomphalus aspersa, Vitamin C and Proteoglycans. J Clin Cosmet Dermatol Journal of Clinical and Cosmetic Dermatology. 2018;2.